255 research outputs found

    t tbar W and t tbar Z Hadroproduction at NLO accuracy in QCD with Parton Shower and Hadronization effects

    Get PDF
    We present theoretical predictions for the hadroproduction of t tbar W+, t tbar W- and t tbar Z at LHC as obtained by matching numerical computations at NLO accuracy in QCD with Shower Monte Carlo programs. The calculation is performed by PowHel, relying on the POWHEG-BOX framework, that allows for the matching between the fixed order computation, with input of matrix elements produced by the HELAC-NLO collection of event generators, and the Parton Shower evolution, followed by hadronization and hadron decays as described by PYTHIA and HERWIG. We focus on the dilepton and trilepton decay channels, studied recently by the CMS Collaboration.Comment: 21 pages 12 figure

    Z0 - boson production in association with a top anti-top pair at NLO accuracy with parton shower effects

    Full text link
    We present predictions for the production cross section of a Standard Model Z0-boson in association with a top-antitop pair at the next-to-leading order accuracy in QCD, matched with shower Monte Carlo programs to evolve the system down to the hadronization energy scale. We adopt a framework based on three well established numerical codes, namely the POWHEG-BOX, used for computing the cross section, HELAC-NLO, which generates all necessary input matrix elements, and finally a parton shower program, such as PYTHIA or HERWIG, which allows for including t-quark and Z0-boson decays at the leading order accuracy and generates shower emissions, hadronization and hadron decays.Comment: 10 pages, 5 figures; found and corrected a bug in the phenomenological analysis, just affecting Fig.4 - 5 that turn out to change slightly with respect to our previous version and the cross-section values after all cuts. Conclusions qualitatively unchange

    Separation of soft and collinear infrared limits of QCD squared matrix elements

    Get PDF
    We present a simple way of separating the overlap between the soft and collinear factorization formulae of QCD squared matrix elements. We check its validity explicitly for single and double unresolved emissions of tree-level processes. The new method makes possible the definition of helicity-dependent subtraction terms for regularizing the real contributions in computing radiative corrections to QCD jet cross sections. This implies application of Monte Carlo helicity summation in computing higher order corrections

    One-loop Singular Behaviour of QCD and SUSY QCD Amplitudes with Massive Partons

    Get PDF
    We discuss the structure of infrared and ultraviolet singularities in on-shell QCD and supersymmetric QCD amplitudes at one-loop order. Previous results, valid for massless partons, are extended to the case of massive partons. Using dimensional regularization, we present a general factorization formula that controls both the singular epsilon-poles and the logarithmic contributions that become singular for vanishing masses. We introduce generalized Altarelli--Parisi splitting functions and discuss their relations with the singular terms in the amplitudes. The dependence on the regularization scheme is also considered

    Precision studies for Drell-Yan processes at NNLO

    Full text link
    We present a detailed comparison of the fixed-order predictions computed by four publicly available computer codes for Drell-Yan processes at the LHC and Tevatron colliders. We point out that while there is agreement among the predictions at the next-to-leading order accuracy, the predictions at the next-to-next-to-leading order (NNLO) differ, whose extent depends on the observable. The sizes of the differences in general are at least similar, sometimes larger than the sizes of the NNLO corrections themselves. We demonstrate that the neglected power corrections by the codes that use global slicing methods for the regularization of double real emissions can be the source of the differences. Depending on the fiducial cuts, those power corrections become linear, hence enhanced as compared to quadratic ones that are considered standard.Comment: 24 pages LaTeX, 17 figures, (journal version
    corecore